
Symbolic Execution
and Program Testing

JAMES C.KING

IBM THOMAS J.WASTON RESEARCH CENTER

PRESENTED BY: MENG WU

1/23

History of Symbolic Execution
Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT–a formal system for testing and
debugging programs by symbolic execution. In ICRS, pages 234– 245, 1975.

James C. King. Symbolic execution and program testing. CACM, 19(7):385–394, 1976. (most
cited)

Leon J. Osterweil and Lloyd D. Fosdick. Program testing techniques using simulated execution.
In ANSS, pages 171–177, 1976.

William E. Howden. Symbolic testing and the DISSECT symbolic evaluation system. IEEE
Transactions on Software Engineering, 3(4):266–278, 1977.

2/23

About the Paper

3/23

Problems in Program Testing
Predicates

Program

Assertion

Req1: enumerate all possible input values

Req2: explore all feasible paths

4/23

Problems in Program Testing
Predicates

Program

Assertion

Req1: enumerate all possible input values

Req2: explore all feasible paths

5/23

Problems in Program Testing
Predicates

Program

Assertion

Req1: enumerate all possible input values

Req2: explore all feasible paths

Symbolic Execution

BMC or Abstraction

6/23

Main Ideas

Generalize testing by using unknown symbolic variables in evaluation

 Update a symbolic state formula after each statement

 Check the path constrains/conditions

7/23

Main Ideas

Insights:

 ‘Execute’ programs with symbols: track symbolic state rather than concrete
input

 ‘Execute’ many program paths simultaneously: when execution path diverges,
fork and add constraints on symbolic values

 When ‘execute’ one path, we actually simulate many test runs, since we are
considering all the inputs that can exercise the same path

8/23

Example

• Manual test creation: build test with input 6

• Auto-Test?

• y is 32-bit integer

• How many test inputs for full coverage? 2^32

9/23

Example

y is symbolic: y = s

y = 2 * s // still symbolic
Fork execution, add constraints

to each path

true path constraint:

2*s==12

Need constraint solver
10/23

That`s all you need to know!

11/23

More Details
• Definition: execution state

• Line number

• values of variables (symbolic/concrete): x=s1, y=s2+3*s4

• Path Condition (PC): conjunction of constraints (boolean
formulas) over symbols:
s1>0 ∧ α1+2*s2>0 ∧ ¬(s3>0)

12/23

More Details
• Execute assignment: evaluate RHS symbolically, assign to LHS as

part of the the state.

• Execute IF (r) / then / else: fork

• then: PC ⟵ PC ∧ r

• else: PC ⟵ PC ∧ ¬r

• Termination: solve constraint

13/23

Execution tree

14/23

Execution tree properties
• For each satisfiable leaf exists a concrete input for which the

real program will reach same leaf ⇒ can generate test

Comutativity

• PC's associated with any two satisfiable leaves are distinct
⇒ code coverage.

15/23

Applications

16/23

Detecting Infeasible Paths
Suppose we require α = β

Infeasible!

17/23

Test Input Generation
Given Path Condition to
Constrain Solver, it will
produce test input for each
path:

18/23

Bug Finding

19/23

A Simple Symbolic Executor: EFFIGY
Integer Value only

IF, THEN, ELSE, DO, GO-TO, DO WHILE

Basic Operators

State Saving and Restore

Completely User Guided Execution

20/23

Modern Tools

21/23

Problems And Later Research
 Path Explosion (IF, Loops)

Search Strategy: Random Search, Coverage Guided Search

Concolic (concrete&symbolic) Testing

 Constrain Solving

Powerful SAT/SMT solver: Z3, STP, Yices

Non-liner Constrains, Float-point constrains, Quantifiers, Disjunction

 Memory Modeling

KLEE : Open source symbolic executor; Runs on top of LLVM

Handling Concurrency

22/23

Thanks & Questions?
Reference:

Symbolic Execution for Software Testing: Three Decades Later”, CACM, Feb 2013, p 82-90

https://www.cs.umd.edu/class/fall2011/cmsc631/

http://www.seas.harvard.edu/courses/cs252/2011sp

https://en.wikipedia.org/wiki/Symbolic_execution

23/23

https://www.cs.umd.edu/class/fall2011/cmsc631/
http://www.seas.harvard.edu/courses/cs252/2011sp
https://en.wikipedia.org/wiki/Symbolic_execution

