
Symbolic Execution
and Program Testing

JAMES C.KING

IBM THOMAS J.WASTON RESEARCH CENTER

PRESENTED BY: MENG WU

1/23

History of Symbolic Execution
Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT–a formal system for testing and
debugging programs by symbolic execution. In ICRS, pages 234– 245, 1975.

James C. King. Symbolic execution and program testing. CACM, 19(7):385–394, 1976. (most
cited)

Leon J. Osterweil and Lloyd D. Fosdick. Program testing techniques using simulated execution.
In ANSS, pages 171–177, 1976.

William E. Howden. Symbolic testing and the DISSECT symbolic evaluation system. IEEE
Transactions on Software Engineering, 3(4):266–278, 1977.

2/23

About the Paper

3/23

Problems in Program Testing
Predicates

Program

Assertion

Req1: enumerate all possible input values

Req2: explore all feasible paths

4/23

Problems in Program Testing
Predicates

Program

Assertion

Req1: enumerate all possible input values

Req2: explore all feasible paths

5/23

Problems in Program Testing
Predicates

Program

Assertion

Req1: enumerate all possible input values

Req2: explore all feasible paths

Symbolic Execution

BMC or Abstraction

6/23

Main Ideas

Generalize testing by using unknown symbolic variables in evaluation

 Update a symbolic state formula after each statement

 Check the path constrains/conditions

7/23

Main Ideas

Insights:

 ‘Execute’ programs with symbols: track symbolic state rather than concrete
input

 ‘Execute’ many program paths simultaneously: when execution path diverges,
fork and add constraints on symbolic values

 When ‘execute’ one path, we actually simulate many test runs, since we are
considering all the inputs that can exercise the same path

8/23

Example

• Manual test creation: build test with input 6

• Auto-Test?

• y is 32-bit integer

• How many test inputs for full coverage? 2^32

9/23

Example

y is symbolic: y = s

y = 2 * s // still symbolic
Fork execution, add constraints

to each path

true path constraint:

2*s==12

Need constraint solver
10/23

That`s all you need to know!

11/23

More Details
• Definition: execution state

• Line number

• values of variables (symbolic/concrete): x=s1, y=s2+3*s4

• Path Condition (PC): conjunction of constraints (boolean
formulas) over symbols:
s1>0 ∧ α1+2*s2>0 ∧ ¬(s3>0)

12/23

More Details
• Execute assignment: evaluate RHS symbolically, assign to LHS as

part of the the state.

• Execute IF (r) / then / else: fork

• then: PC ⟵ PC ∧ r

• else: PC ⟵ PC ∧ ¬r

• Termination: solve constraint

13/23

Execution tree

14/23

Execution tree properties
• For each satisfiable leaf exists a concrete input for which the

real program will reach same leaf ⇒ can generate test

Comutativity

• PC's associated with any two satisfiable leaves are distinct
⇒ code coverage.

15/23

Applications

16/23

Detecting Infeasible Paths
Suppose we require α = β

Infeasible!

17/23

Test Input Generation
Given Path Condition to
Constrain Solver, it will
produce test input for each
path:

18/23

Bug Finding

19/23

A Simple Symbolic Executor: EFFIGY
Integer Value only

IF, THEN, ELSE, DO, GO-TO, DO WHILE

Basic Operators

State Saving and Restore

Completely User Guided Execution

20/23

Modern Tools

21/23

Problems And Later Research
 Path Explosion (IF, Loops)

Search Strategy: Random Search, Coverage Guided Search

Concolic (concrete&symbolic) Testing

 Constrain Solving

Powerful SAT/SMT solver: Z3, STP, Yices

Non-liner Constrains, Float-point constrains, Quantifiers, Disjunction

 Memory Modeling

KLEE : Open source symbolic executor; Runs on top of LLVM

Handling Concurrency

22/23

Thanks & Questions?
Reference:

Symbolic Execution for Software Testing: Three Decades Later”, CACM, Feb 2013, p 82-90

https://www.cs.umd.edu/class/fall2011/cmsc631/

http://www.seas.harvard.edu/courses/cs252/2011sp

https://en.wikipedia.org/wiki/Symbolic_execution

23/23

https://www.cs.umd.edu/class/fall2011/cmsc631/
http://www.seas.harvard.edu/courses/cs252/2011sp
https://en.wikipedia.org/wiki/Symbolic_execution

